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ABSTRACT

A numerical method for solving diffusion problems in plane,
spherical, and cylindrical geometries is developed in this report.
The method is, for the sake of brevity, referred to as the Sn-
method, Specifically, it applies to the integro-differential
equation of Boltzman, known in neutron diffusion work as the
Transport Equation. Solutions are obtained in the spherical case
for the stationary as well as the time-dependent form of the
equation. Moreover, it is shown that problems in plane and
cylindrical geometries may be identified with problems relating

to spheres,
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l. Introduction,

3ince the first report on the Sn-methodl)

was issued, the
method has been simplified and improved in a number of ways.

This spplies above all to the time-dependent case. The method
has also been extended to handle problems of a more elaborate
nature, These mﬁy now, for instance, involve anisotropic scatter-
ing or diffusion in cylindrical systems. For these and other
reasons, & revised and amplified report is called for.

The Sn-method has, to date, been applied to a wide variety
of problems, too numerous to discuss in detail. The report will
therefore be confined to general or standard types of problems.
Once the general features of the method are understood, adaptation
to particular problems is not difficult. The method may, in any
case, be regarded as thoroughly tested in practice. It has been
found to be efficient, dependable, and accurate, and is therefore
recommended for general use. Certain classes of problems permit

a simplification of the Transport Equation. Even these may be

more readily solved by the Sn-method than by the methods now in use.

]LA—1599, October 1953,




2. The Transport Equationa).

For the case of spherical geometry, isotropic scattering, and
stationary problems, and with neutrons clessified in velocity

groups, the Transport Equation has the following form:

(1) [IuDr + erf Dyt +c‘] N(r,u) = 8(r),

where the source term S(r) is given by (3), and the bracket de-
notes a partial differential operator. N(ra/u) represents the
neutron flux (neuts/cm? sec) at the radial distance r (cm) in the
direction O ( At = cos @) ¥ith respect to the positive r-direction,
The total cross section O°(1/cm), the source term S(r), and the flux
N(r, /4) depend in general on the velocity group., This dependence
will be indicated by a subscript g whenever clarity demands it.

In addition, 0 ususlly depends on r. ¢ is, for instance, a step
function of r if éeveral materials are involved.

In the time-dependent case, equation (1) is replaced by:

2
(2) %-Dt + gD + l——;é‘— 1}‘_ + 0'] N(t,r, ) = 8(t,r),

where t denotes time (sec) and Ve neutron velocity (cm/sec).

Equations and formulae for the plane case are obtained by

merely removing the terms in 1/r wherever they occur, and
¥
3 * ) §
]For derivations and general background, the following treatise
is recommended: K, M, Case, F. de Hoffmann, and G. Placzek;
Introduction to the Theory of Neutron Diffusion, Volume I, United
States Government Printing Office, Washington, D, C., 1953.

-5-




interpreting r = O as some origin plane. A separate discussion

of the plane case is therefore not necessary.

3. The Source Term S.

In the isotropic case the source or coupling term s(t,r) does
not depend on A . The standard form of S(t,r) is therefore quite
simple. It is glven by:

)2 1 o, [
(3) Sg(t,r) = = G'gg,Ng,(t,r)E 5 = Oe [;Ng'(t,r,/u)yc,
where t is to be omitted in the stationary case. The transfer
coefficients cég, (1/cm) represent the number of neutrons trans-
ferred (per cm) from group g' to group g, and may, like Gé,
depend on r. The relationship between o.gg' and actual cross
sections, measured or estimated, is illustrated below.

Consider the following idealized neutron-nuclei interactions
with the indicated cross sections given: (A) Absorption, Cfé?

given. (B) Elastic or velocity-preserving scattering, UE?
given. (C) Inelastic or velocity-degrading scattering3)

(v ,» Vg)a a-gj;

Ogg' = 1, and vgs Vgre (D) Emission of )/ neutrons due to

and the scattering spectrum 933' given, with

g
fission, céf and the fission spectrum )4g (independent of g')

) R

3 One usually distinguishes between two types: a) true inelastic
scattering with no coupling of v8 and the scattering angle, and
b) slowing-down scattering with~such coupling.

“He



given, with Z)’g =\). 0f these interactions, elastic scattering
and inelastic gcattering of the slowing-down type may be aniso-
tropic processes, that is, G‘; and O'g% may depend on the deflec-
tion cosine /7-, -1 2/'2 21, In the case of slowing-down, a rarge
of ja is, furthermore, associated with each Vg

For the case illustrated, the total cross section o’g, and

the transfer coefficients o-gg' are, as the terminology suggests,

given by:
a e i f
(&) O'g, = O‘g, + o‘g, + O'g, + O'g,, and
e i f
= + +
(5) O"gg. a.gy Jggl G-gl Dggv c'gt ))g}

where é_gg' =11if g = g' and zero if g £ g'.

4, The Transport Approximation.

if 0"; and O'g% s introduced above, depend on /& we have no
longer an isotropic problem and equation (3) is not valid. It
may, however, be regarded as approximately valid, provided certain
parameter modifications are made. This procedure, which has a
certain amount of theoretical justification, is known as the
Transgport, Approximation.

The following modifications usually are made:; (A) O ; and
(43 g% are replaced by the corresponding integrals over ,lz . In

particular, this applies to the expressions (4) and (5). (B) Cer-

tain parumeter corrections, Eg" are then calculated and




subtracted from o'g, 8ud O'g'g" where Eg, is obtained from:

1
- i - -
6 €, - f Z|oS .
() 8' '-l/‘ gl (ﬂ)*’ Ug' (/u) /u
Although the Transport Approximation is essentially a recipe,
it is comnonly used ard quite accurate, at least in the integral
sense., In doubtful cacses, the anisotropic problem should be

solved directly, using the methods of Section 9.

5. Definition of {he Sn-Method.

We divide the M -interval (-1,1) into n intervals ( MM J),
J=1,25ce.pm, poy = -1, M =1, and approximate N(r,/a) by n

connected straight line segments as follows:

(1) Nr,p) =%~'_f‘/-;li N(r, ) +;—§-—/—%—l— N(r, 4 ),
where & 5-1 £ M s /JJ.. The order of the approximation, denoted by
n, may be any positive integer. Equation (7) is used below tu
transform equation (1), which involves the function N(r, /a) , into
n equations relating the functions N(r,,uj), j=0,1,...,n. The
transformation is accomplished by substituting (7) in (1) and then
integrating both sides of (1) over Mo separately for each /l -
interval. An additional equation is obviously required and this
is obtained by substituting /u= -1 directly in (1). The reason
for this choice will be apparent after reading Section 6.

The ,a -mesh defined above will be referred to as standard if

-8
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the length ,('j of (/”j-l’/".j) is equal to 2/n for all j. It may,
howvever, be chosen to suit the particular problem one is consider-
ing. The choice of n may also be related to the application
intended. Experience has shown, however, that the Sh-approximation
satisfies most accuracy requirements., Large values of n are, in
any case, not necessary; in fact, n = 2 or 3 may often do.

To facilitate the transformation referred to, we evaluate
first a number of integrals involving (7). The range of inte-
gration is, in each case, the interval (,a.j_l,,uj). To simplify
the notation, we replace N(r,/uj) by N(Jj) and N(r’/uj—l) by M(J3).

We have:

S p) ap =3 A [N0G) + m)]
(8) S anep) o =5 £ [an(s) +aps)

ECEY SRR AR VIR ¥ XN IS ) I
where 8y = (2,«J +/aj-1)/3’ EJ. = (/“j + 2/43_1)/3, and

by = (@303 - pg - py My AL DN - Ay ). Ve assune

in what follows ;t';haf,; aj # 0 in order to simplify the discussion.

Now, performing the transformation, we obtain the following

equations, the Sn-equations for the stationery case:
(9) (D, +2+4¢) N+ (@_ -2 4+¢) M =cS
r T r r oo

where a, a, and b deperd on Jj, J = 1,2,...,n, Nand Mon j and r,



-

and S on r, and where ¢ 2. The equation for N(Q), obtained by
- letting M = -1 in (1), may be included in (9) if for j = O we
let a = -1, b=M=0, and ¢c = 1,

From (7) it alsoc follows that the total flux N(r) is given by:

(10)  N(r)E 3 f1 Mro ) dp = L p, M3)
2 J, ) Ipm e ’
where py = £./4, by = B /%, evd p; = ( L+

j+l)/h’ J=12,...
n-1, which in the standard case reduces to Py =P, = 1/2n, and

;= 1/n.

The above procedure may be duplicated for the time-dependent
case, with the result that (9) is replaced by:

1 b 1 - b

(11) (;Dt+aDr+;+<r)N+(;Dt+aDr—;+0‘)M-cs,

where N, M, and S now depend on t as well.

In line with remarks mede in Section 3, the plane case now
may be identified with the spherical case by simply letting b = O
in (9) and (11).

6. Integration of the S, -Equations.

To obtain accuracy in the numerical integration of equations

describing particle flow, it is usually necessary to integrate in
the direction of the flow. Consider a thin layer of material and,
incident on it, a stream of particles of intensity Ql.

The
energing intensity Q2 may then be equated to qQI+4rr, where q is

~10-
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:

the attenuation factor (q < 1) and T the source term (the intensity
contributed by the layer of material). The errors in q and T are
essentially controlled by making the integration steps small
enough, the ertor in Ql by the fact that q €« 1. On the other hand,
if Q, is obtained from Q,, i.e., Q = (Q2- T)/q, we can expect, in

general, the division to amplify the errors,

The integration rules to be used in connection with (9) and
(11) are based on the above observation.

Consider first the integration over A . It is readily veri-
fied that streaming in a spherical system is associated with an
ircrease in . A stream directed towards the center of the system
is the only exception. In this case, /4 Jumps from -1 to 1 at the
origin. The integration over /a will therefore be performed in
the positive A -direction starting at M= -1. This is the reason
for incorporating equations involving N(r,-1) in (9) and (11).

Consider next the integration over r. If a 3 is negative, we
are concerned with particles directed toward the central parts of
the system. If, on the other hand, a,‘j is positive, then outward-
directed particles are involved. The integration over r will
therefore be performed in the negative direction if a 3 <0 and in
the positive direction if a.'j >0,

The complete integration procedure can now be outlined. We

assume that at some stage of the calculation N(r) and hence S(r)

-11-




are given for each g. Equation (9) is then integrated over r,
according to the above rules, for j=0,1,...,n and in that order.
This is repeated for each g and finally (10) is used to obtain a
new set of N(r)-functions. In the stationary case this procedure
establishes an iteration method for arriving at the soluvtion of
(1). 1In the time-dependent case the procedure is used to advance
the solution from one time step to the next, that is, to solve
equation (2).

7. The Stationary Case.

We divide the r-interval (O,rI), where ry is the outer radius
of the system,into I intervals (ri-l’ri)’ 1=1,2,...,I, ry = 0, and
approximate any function F defined over (ri—l’ri) by a straight
line. The integrals of DrF and F over the interval are then given
by Fi -F

1
1.1 and §'Ai(Fi + Fi-l)’

length of the ith interval, The parameters :rg and cég, will be

respectively, where Ai is the

specified for each interval rather than its bounds, and r in the
e,t-term will be treated in the same way, i.e., r will be replaced

by 8= %(ri +r Integrating equation (9) over r as indicated

i-l)'

above, letting i-1 =k, m = |a|l, and m = a sign (a), we obtain for

a, >0
J

o;a; P4
5

Fidi bdi — (o} Ai
(12) m(Ni-Nk) + (——5— + 55;)(N1+Nk) + m(Mi"Mk)+( 55;)(M1+Mk)= -§—(SiﬂSk),

or solving for Ni:

-]12-




C:A ba o.a ba c.a ba cA
i%i i - i%i i - i1 i i
23) (- =5 - g M@ - =+ z5, M (B4 =7 - Mt —5(8+5)
13) N, =
i oA bA
i i
(m+ —5—=+ 25, )

Repeating the above steps for aj <0 with reference to the
interval (ri’ri+l) and with i+l = k we have:
‘i‘i b‘i _ o84 bbi cAi
() (W -N,) + (5 é's‘;)(Nk'*Ni)' (8 My 4+ (5~ - EE;)(Mk*Mi)"' ~5(58, )5

or solving for Ni:

bé ‘i‘i ba “i‘i b4 cé

(- 2L Yy (@ Lyu - (& L)k, + —2(5, 45, )
m- T % W - = g e e M T
1 =
(5) Ni O.Ai 541

m + 2 +2Bi

Note that (15) is identical to (13) in form except that g, Ai,
and s:l in the first case are associated with the interval (ri-l’ri)

and in the second with (ri,ri+1).
Equation (13) or (15) represents the 5,-solution of equation
(1). To initiate the calculations, the conditions at r = r; and
r = O must be given. If S(r) is given by (3) we let N(rI, /43) =0
for aj<0, i.e., no invard flux at r , and let N(o, /‘5) = N(o,-,aj)
. for a‘j >0, i.e., continuity at the center. Furthermore, the N(r)-
functions must be specified initially so that the S(r)-functions

may be obtained. If better information is unavailable, they may be

-13-



set identically equal to unity.

Finally some sort of convergence criterion must be applied to
terminate the calculation. One may, for instance, compare two
successive iterations in a point-wise manner (for each i) until
the desired agreement is obtained.,

The r-mesh is chosen, like the u -mesh, to obtain the desired
degree of accuracy. It need not be uniform and is essentially
determined by the smoothness of the flux-functions. Experience
hes shown that from 20 to 90 space points are normally sufficient.

The tables below summarize the information necessary for 82
and Sh calculations if the M -mesh is standard.

Table for 82 .

J N M k m

81
o’
0
o)

0 | N(0) 0 i+l | 1 - o 1 |1/4
1 | N(1) | nN(0) ‘1+1 1/3 j2/3 |4/3 |2 |1/2
2 IN(2) In() [ 1-2 |2/3 |1/3 |&/3 |2 |i/m

Table for SL; .

J N M k m m b c ho)
¢ | n(0) 0 i+l 1 - o} 1 |1/8
1 | N() | N(o) | 141 |2/3 |5/6 | 5/3 |2 [im
2 |N(2) |} N(1) | 441 |1/6 [1/3 [11/3 |2 [1/%
N(3) | N(2) | 1-2 |1/3 {1/6 |11/3 |2 |im
N(4) | N(3) |11 [5/6 |2/3 [5/3 |2 [1/8

-1




v 8. The Time-Dependent Case.

The solution of equation (11), the Sn-transform of equation

(2), will require integration over the variables t and r. A set
of time intervals (t,f ’tl +l) of length S/e ,/ = 0,1,..., must
therefore be coupled with the r-mesh defined in Section 7. The
integration method, to be described below, may be classed as a
characteristic method. The characteristic direction is here

. identified with the direction of the particle flow in time and
space, This is clearly determined by the coefficients of Dt and
D. in (11). Since the latter are constants, the slope of the
characteristic QP (see diagram below) is, in fact, given by 1/mjv
where mj = lajl. A typical integration step consists of finding
the flux-functions N(j) at P in terms of information available at

R, Py, and Py, (obtained by previous integration steps).

time
= P F 4
t_!("'l 10 -~ direction of -
A; [B] _ - P r-integration
mv -
] -

) l Po1

t=tg ‘ﬂh ‘a—mv § -
r=r r=r.
k i

-15-



wo cases arise and these will be comsidered separately.
(A) The characteristic line QP intersects the line t = t g- In
this case we make the assumption that a function F defined over
the triangle [A], RPPOl, may be approximated over [A] by a plane
surface. (B) The line QP intersects the line r = Ty (k = 1-1 if

aj>0, k = 1+1 if a,<0). 1In this case we make the corresponding

J
assumption with respect to the triangle [B], RPP10'
Case A.

It will be convenient below to have equation (11) available

in the following form:

(16) (3D +aD,)(N + M) = U=- (G + 2N - (0 - 2)M +,4 DM + cs,

where /§'= a - a. The assumption made permits us to evaluate Dt
along r = r, (POlP) and D along t = ?l (QPOl) and this is equiv-
alent to finding the total derivative %Dt + aDr along QP. The
latter may then be thought of as centered at the midpoint of QP.
For the sake of consistency, U should also be centered at
the midpoint of QP, that is, replaced by %(UQ + UP)‘ U is, how-
ever, constant over the triangle [A] since the derivative of the
left-hand side of (16) vanishes by assumption. How U is to be
averaged is therefore determined by other considerations. Primary
among these is the desire to have the resulting difference equation

conform with the stationary case if D, = O, which leads to the

t

-16-




conclusion that U should be centered on the diagonal RP and hence
be replaced by %‘(UR + Up).

The directions given above are now applied to equation (16)
to transform (16) into a difference equation. In what follows,
t ¢ ~dependence will be indicated by a superscript O and 1'] h
dependence by a superscript 1. The difference version of (16) is
given by:

c
D) o )e S04 = (G + o))

(G- B « R cts)

where /49 =m - m. Adding —A?L;(N2+M§-N§-Mi) on both sides of (17)

and multiplying all terms by 4 L where w = mv 50/A 40 Ve have:

b4,
(18) m(l-w)(Nl+Ml-N -M; ) = -w(m + S——;—i T—) Nl + WK,

vwhere K is given by:

ba oA b4

< .4
id - E‘i)NIO{'*‘(m- - + é—s;)M)o{-(m‘}' ‘—-é—- T—)M:J{

(19) x = (m-

« GOGaaG) + et e 0.

Finally, solving (18) for N- ve obtain:

[y

-17-




m(1l-w) [NS + M(i) - M:iL] + wK

c.8; D4,
m(l-W) + W(m + -5 + 55:-)
i

(20) N =

i

Case B.

The assumption made in this case permits us to evaluate Dr
along t =tp . (PloP) and D, along r =r, (O,PJ_O), that is, the
total derivative %Dt + a.Dr along QP. The function U is handled

as in Case A, and we obtain, corresponding to (17):

1) R e ) - Ko,

where %(Ui+u£) is identical to the right-hand side of (17). Adding

—E—(N0+M§-N1-M;) to both sides of (21), and multiplying both sides
&,k 1™

by A, letting w = Ai/mvxo, we have:

ba

(22) m(1-w) (NoaO-NE-) = -(m + {1_20_1_ + E? N, + K.

Finally, solving (22) for N’i‘ ve obtain:

N’l n(1l-w) (Niwli-Ng-Mg) + K
m + ——§~ + EE;

Equations (20) and (23) represent the 8,-solution of (2) in

the time-dependent.case. To perform the calculations the flux

-18-




functions mist be given at t = to, the starting time. The

conditions at r = O and r = r; are, in the standard case, identical

to those given for the stationary equation. Note that in evalu-

} is not available. It is therefore, as a rule,

necessary to iterate once for each time step, taking Si' = Sci) for

the first integration, and then repeating, with the values of S:iL

ating K above, S

thus obtained, the calculations for this time step.

9. The Anisotronic Case,

In the case of stationary problems and anisotropic scattering,

the source term S(r) as given by (3) is replaced by:

(24) s(r,u) = 2. & () T o)
T T &8 Tl Tgg AT M

g
where

1,7
l -

25) T (r =—-——ffNr' - da@am’
(25) ‘eg ( }/‘) T /. J g'( ,/‘ ) [O’ggv(/‘) C'gg] ¢ Y adil)
which expresses the relation between the {lux Ng,(r, /a') prior to
interactions and the resulting emergent flux ng,(r N ,a). The
quantity d.gg' represents the inte‘gral of 6 gg'(/”-) over /E ,

-1 £4 £1, From the diagram below we observe that the following

relation between /47 » /a', and @ holds:

(26) J5 = s’ + \'(1./42)(1./;'2) cos .




incident direction

emerging direction

it
0
o)
o
o

TR

collision center

To evaluate 'I‘gg,(r,/u.) we expand [o‘(/&) "]gg' and Ng,(r,/‘v)
in Legendre series:

(27) [o'(,ii) -c]gg.=% ‘}aég.l’l(/?) + 5a§g.1’2(/'4') + =--m- ] » and

(28) Ng'(r’ﬂ') = % [Ngl(r) + 3%1(1')}?1(/") + smiv(r)Pz(ﬂ') + "‘] ;]

m m
where Bg! and hg,(r) are given by:

) sp. - J 608 -0], mlE A, s

1
R ACEY EMCYOEXPRIE

Since N(ra;c') is approxiuwated by a set of connected straight

line segments 1n/‘;, it is clear that Nz,(r) mAy be expressed in

-20-




.

terms of the S -functions Ng,(j) = Né,(raluj).
With the aid of the above expansions and the addition theorem
associated with Legendre polynomials, the series for ng'(rﬂ/‘)

can be obtained. This series is given by:

(31) ngl(r,/) = %[3a;g'N;'Pl(/‘) + 5&:8,1‘72,]?2(/‘() + ----] R

If now the integrations over ( /“j BY /aJ) associated with the
S, -method are performed upon (31), we obtein a set of ng,(d).
The source term may therefore be written as follows:
G2) 30 = X [y, + z ]
where ng,(j) represents the anisotropic contribution.

To obtain the explicit expression for Tég'(d)’ it is
necessary to perform a number of simple integrations over/ll,
first to find Ng, in terms of Ng,(j) and then the indicated sub-

integrals of (31). In the standard case with n = 2 and 4 we have
in matrix notation:

Sz-approximation:

1
-1. . .0000 .5000| [N _,(0
ng,(l) 1.0 1| (e, o2 5000 5 2 (0)
= |- .5 o .3125 -.6250 .3125) |{W_ (1
ng,(z) 5 0 gt | -3125 50 .3125| |N,,(1)
. N (2
Tgg(3) 5 0 g (2)

21~




Sh-approximation:

Tge (D)
T g (2)

T g (3)

Tgr ()
g (5)

-1.00 1,000
- 15 .375
- <25 - .375
.25 - .375
15 W375

-1.0000 1.,0000

- .3125 -.3750
3516 -.0781

- 2461 4922

0791  -.34k57

.0k69 - .1172
2669  .1172
2969 L1172
.0k69 - 1172
0000 .3750

-.5470 -.0781"
.0000 -,h4o22

5332 -.3457

-22.

at, 0 o0 o
g’
0 o 0
“eg’
0 0 agg, 0]
0 0] 0 ah ‘
gg

3125) /¥, (0)
.3516 Né,(l)
2461 N, (2)
0791 N_.(3)

N (4)




10. Cylindrical Geometryu).

The Sn-method can also be applied to cylindrical systems,
finite or infinite, which are symmetric about a given axis,
Furthermore, with proper choice of coordinates, problems in
cylindrical geometry can, in most cases, be identified with
problems relating to spheres. For the sake of simplicity, we
limit the discussion below to systems also symmetric about an
origin plane, perpendicular to the axis.

The following choice of coordinates is made: Position in
the system is denoted by (z,r) where z is the distance from the
origin plane and r the distance from the axis. The direction of
a neutron beam is specified by a deflection angle ¢ (7 = cos P)
and an azimuthal angle 6 ( M = cos ©). The two angles  and
0@ are measured with respect to the axial (z) and radial (r)
directions, the latter angle in a plane parallel to the origin
plane,

In terms of the above coordinates, the Transport Equation for

the igotropic case is given by:
2
1 2 1- -
(33) [th‘“?Dz* h-y (uor+—-rﬁ'—1)“)+o']N_s

1
where = NAQ) = E;'LW N(t,z,r,p ,/U.)dn is the total neutron flux

}I

n collaboration with Stewart Schlesinger.
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(neuts/cmg sec) over the angular differential element

dfL = sin Pd@PdO, and S = S(t,r,z) 1s the source term with

(34 Z o 1 Z. f lfl e
) s - o ee'e' = BT = O J J, = M-
1-pm
The acceptability of y and /a as variables describing the
direction of the beam (i.e.,that both have ranges which are in
one-to-one correspondence with the effective range of the angles
of which they are the cosines) follows from the fact that the two
angles describe the physical situation completely with ranges of
only one-half of a revolution. This is clear for 7 by its very
definition, and follows for S due to symmetry about any radius
in a8 plane perpendicular to the axis of the cylinder,
If one considers the time-independent problem for a finite

cylinder, the transport equation becomes

(35) [QD +‘ll- (,aD + 1A /,_)+o'] N = S.

For values of D) which are not equal to either one or minus one,
it is clear that (35) can be written like a multi-velocity time-

dependent problem for a sphere,

2

(36) | ==, + (uo, + LA 5y T fy- 8

‘1_75 i * 11 _yz 1-92
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the solution of which has already been described in previous

sections.S) For 9 = + 1, the problem is equivalent to that of

a plane, for which solution by the Sn-method has previously been

discussed. ‘
The analogy described above between (36) and the time-

dependent spherical problem might at first glance appear to break

down when 9 becomes negative. However, in these cases the boundary

conditions are known on the opposite circular face as for positive

h. Hence, the variable z can be replaced by -z, and the boundary

condift.ion can then be taken as corresponding to the same circular

face for all h . Therefore, one can advance through the (r,z)

mesh in the same direction for each ) (since the cylinder is

assumed to be symmetric about an origin plane), in precisely the

same manner as for a mlti-velocity time-dependent problem for a

sphere,
It should be noted that employing the above method of inte-

gration for (36), the sign of 9 does not influence nmmerical

calculation provided the source term is sssumed to be known for

E]Due to the presence of the factor 1/ ll -/u? in the integrand of
the source term (34), the p,-values (see p. 7) must be re-
evaluated. Tor a standard.';¢~mesh, we obtain in the cylindrical
case .= .3183, Py = .363k, Py = .3183 for Sp, arnd p, = .2180,

P, = .8006, P, = <1628, Py = .2006, p, = .2180 for S), rather
tﬁan the valués given in “the tables on p. 1k,

-25.




each stage of the integration. Hcwever, the sign of b must be
taken into account when the source term is evaluated prior to the
next stage of integration.

To evaluate the source term as indicated in (3%), it is
convenient to select the roots of a Legendre polynomial as the
finite set of ) values so that the Gauss Quadrature Formula can
be.employed. Since these roots are symmetric about zero, the
advancing through the (r,z) mesh can be accomplished by using only
positive 0 and then modifying the source ﬁerm computation appro-
priately.

Another cylindrical problem which admits the same type of
solution is that of the time-devendent infinite cylinder. The

Transport Equation in such a case has the following form:
Y 1 -p°
(37) P+ V1 -9 (pp, + = D/u)+<r N =8,

Such an equation is directly equivalent to a time-dependent multi-
velocity spherical problem, and tae relationship to such a problem
is obtained by merely increasing the number of velocity groups
m-fold if one employs m different values of b .

It is clear that the sign of h does not influence (37).
Unlike the case of the finite cylinder, the source term for the
infinite cylinder can be computed without regard to the sign of ’

since the flux is symmetric about any plane perpendicular to the
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axis of the infinite cylinder. Hence the solution of (37) can be
obtained dealing exclusively with positive values of b .

For the time-independent case of the infinite cylinder, the
problem again is equivalent to a multi-velocity spherical problem,
in an exactly analagous manner as for the time-dependent case.,

In order to achieve accuracy consistent with that of the
Sn-method, 6ne should choose for the values of 0 the roots of the
Legendre polynomial of order n+2, where n is the order of approx-
imation in the Sn-method. This would be true for calculations
relating to either a finite or infinite cylinder.

1l. Comments on Computation,

The solutions obtained in this report are most effectively
evaluated numerically with the aid of a modern electronic calcu-
lator. The time required is first, of course, a function of the
speed of the computing equipment used. The calculations referred

6)

to in this report ‘ were performed on an IBM Type 701l calculator,
characterized by a 60 Msec add time and a k50 /asec multiply time.
The calculation time is also a function of the order of approxima-

tion (n), the number of radial points (I), and the number of groups

}Th

e flow diagrams and programs for the stationary as well as the
time-dependent case, in their most general form, were prepared
by Janet Bendt,
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(G), in fact, approximately linear in these quantities. A typical
stationary Sh-calculation involving one velocity group and 25
radial points, performed on the calculator mentioned, requires
about one second per iteration, If the initial total flux is

taken to be uniform over the entire system, or if the circumstances
are otherwise unfavorable, about 25 iterations may be necessary.

In the time-dependent case the same calculation takes about two

seconds per time step.
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